From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency.
نویسندگان
چکیده
Limbal stem cell deficiency (LSCD) leads to severe ocular surface abnormalities that can result in the loss of vision. The most successful therapy currently being used is transplantation of limbal epithelial cell sheets cultivated from a limbal biopsy obtained from the patient's healthy, contralateral eye or cadaveric tissue. In this study, we investigated the therapeutic potential of murine vibrissae hair follicle bulge-derived stem cells (HFSCs) as an autologous stem cell (SC) source for ocular surface reconstruction in patients bilaterally affected by LSCD. This study is an expansion of our previously published work showing transdifferentiation of HFSCs into cells of a corneal epithelial phenotype in an in vitro system. In this study, we used a transgenic mouse model, K12(rtTA/rtTA) /tetO-cre/ROSA(mTmG) , which allows for HFSCs to change color, from red to green, once differentiation to corneal epithelial cells occurs and Krt12, the corneal epithelial-specific differentiation marker, is expressed. HFSCs were isolated from transgenic mice, amplified by clonal expansion on a 3T3 feeder layer, and transplanted on a fibrin carrier to the eye of LSCD wild-type mice (n = 31). The HFSC transplant was able to reconstruct the ocular surface in 80% of the transplanted animals; differentiating into cells with a corneal epithelial phenotype, expressing Krt12, and repopulating the corneal SC pool while suppressing vascularization and conjunctival ingrowth. These data highlight the therapeutic properties of using HFSC to treat LSCD in a mouse model while demonstrating a strong translational potential and points to the niche as a key factor for determining stem cell differentiation.
منابع مشابه
Review Paper: Application of Hair Follicle Bulge Stem Cells in Wound Healing
Despite the significant advances in regenerative medicine, wound healing has remained a challenging clinical problem. Skin is the largest human organ with many vital functions; therefore, any damage to its normal structure should be treated as soon as possible. Easy access to skin stem cells has created a lot of excitement in therapeutic applications. “Cell therapy” is considered a novel method...
متن کاملEvaluation of the effect of low-level laser irradiation on viability and ROS production in human hair follicle stem cells
Background: Low-level lasers are used for various medical applications including wound healing and hair loss treatment. Cell Therapy using skin stem cells could be a novel approach to hair transplantation. However, there is no study on the effect of low-level laser on the hair follicle stem cells. So, in this study, we investigated the effect of low level laser irradiation on viability and ROS ...
متن کاملسلولهای بنیادی bulge فولیکول مو: منبعی جدید برای بازسازی پوست
Emergence and spread of various diseases in the past century have been associated with many problems for the health care providers. Now a days, with advancement of technology, new methods such as cell therapy, are available, efficient and successful in some clinical areas. To use any cell, it is necessary to identify its source, so herein, we reviewed the literature of a new source of adult ste...
متن کاملDifferences in Growth Response of Human Hair Follicle Mesenchymal Stem Cells to Herbal Extracts and a Growth Factor
Background: One of the key questions in biochemistry is why cell becomes aged and what are the involved factors? Why cell growth is stopped after some divisions and cells become senescent? This occurs in a greater frame in the whole body and cells dye after a while. Androgenetic alopecia (AGA) is characterized by a loss or decrease in hair follicle size, which could be related to the loss of ha...
متن کاملتاثیر غلظتهای مختلف ال- ترانس رتینوئیک اسید بر رشد و بقای سلولهای بنیادی فولیکول موی موش سوری
Background and Objective: Hair follicle stem cells are multipotent, located in the bulge area, and are highly proliferating. Retinoids have an effect on epidermal differentiation and keratinization. Retinoic acid is used to treat some skin diseases such as Melasma, Acne and Ichthyosis. So, the study of all-trans retinoic acid effect on hair follicle stem cells and determination of the effective...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stem cells
دوره 29 1 شماره
صفحات -
تاریخ انتشار 2011